Yes, Aerial Data.
Is there any better approach to process a data-set using the maximal accuracy?
for accuracy in [HighestAccuracy, HighAccuracy, MediumAccuracy, LowAccuracy, LowestAccuracy]:
chunk.matchPhotos(accuracy=accuracy,
preselection=Metashape.ReferencePreselection,
tiepoint_limit=tiepoint_limit,
keypoint_limit=keypoint_limit,
generic_preselection=True,
reference_preselection=True,
keep_keypoints=True)
# Align images location
chunk.alignCameras(cameras=chunk.cameras, adaptive_fitting=True)
total_cameras = len([cam for cam in chunk.cameras])
align_cameras = len([cam for cam in chunk.cameras if cam.transform])
align_prcntg = (float(align_cameras) / float(total_cameras)) * 100.0
print("Total cameras: {}".format(total_cameras))
print("Align cameras: {}".format(align_cameras))
print("Alignment Percentage: {}%".format(align_prcntg))
if align_prcntg > 90.0:
print("Alignment was succesfull - {}%, continue processing...".format(align_prcntg))
break
print(50 * '=')
print("Could not align images using the desired accuracy value : {}".format(accuracy))
print("Trying again with degraded accuracy...")
for camera in chunk.cameras:
camera.transform = None
chunk.point_cloud = None