Replying myself. I did some tricks. This method is adding two temporal markers to calculate image's local x, y responding to the CRS coordinate.
```
chunk = doc.chunk
chunk.addMarker()
chunk.markers[-1].reference.location = CoordinateSystem.transform((longitude, latitude, altitude), crs, chunk.crs)
chunk.addMarker(chunk.markers[-1].position)
projections = chunk.markers[-1].projections
candidates = {}
for projection in projections.items():
candidates[projection[0].label] = [projection[1].coord.x, projection[1].coord.y]
```
From this code, you can get like this:
"<image-name>": [
image's x pixel,
image's y pixel
]
"candidates":{
"0021_0021_100_0001_0021":[
205.0494384765625,
207.9481964111328
],
"0022_0022_100_0001_0022":[
76.4704818725586,
1245.6832275390625
],
"0023_0023_100_0001_0023":[
63.91649627685547,
2422.911865234375
],
"0024_0024_100_0001_0024":[
140.0779266357422,
3388.39013671875
],
"0026_0026_100_0001_0026":[
1339.7071533203125,
52.32271194458008
],
"0027_0027_100_0001_0027":[
1617.157958984375,
227.45326232910156
],
"0028_0028_100_0001_0028":[
3934.880859375,
1629.427001953125
],
"0029_0029_100_0001_0029":[
3871.526611328125,
2937.04345703125
],
"0055_0055_100_0001_0055":[
3610.4873046875,
163.33616638183594
],
"0056_0056_100_0001_0056":[
3580.642333984375,
1402.5489501953125
],
"0057_0057_100_0001_0057":[
3508.6845703125,
2743.943603515625
],
"0058_0058_100_0001_0058":[
3243.973388671875,
3243.9130859375
],
"0059_0059_100_0001_0059":[
1663.4317626953125,
3028.37158203125
],
"0062_0062_100_0001_0062":[
265.071044921875,
1801.63330078125
],
"0063_0063_100_0001_0063":[
303.8362731933594,
2870.15771484375
]
}