Hi EllieBowler,
going from x', y' to x, y you can use a first approximation as:
x₀ ≈ x' - x' * (k1 * r'² + k2 * r'⁴ + k3 * r'⁶ + k4 * r'⁸) - p1 * (r'² + 2 * x'²) - 2 * p2 * x' * y' = x' + Δx₀
y₀ ≈ y' - y' * (k1 * r'² + k2 * r'⁴ + k3 * r'⁶ + k4 * r'⁸) - p2 * (r'² + 2 * y'²) - 2 * p1 * x' * y' = y' + Δy₀ where r' = sqrt( x'² + y'²)
and then iterate x, y as
x₁ = x' - x₀ * (k1 * r₀² + k2 * r₀⁴ + k3 * r₀⁶ + k4 * r₀⁸) - p1 * (r₀² + 2 * x₀²) - 2 * p2 * x₀ * y₀ = x' + Δx₁
y₁ = y' - y₀ * (k1 * r₀² + k2 * r₀⁴ + k3 * r₀⁶ + k4 * r₀⁸) - p2 * (r₀² + 2 * y₀²) - 2 * p1 * x₀ * y₀ = y' + Δy₁ where r₀ = sqrt( x₀² + y₀²)
and after a few iterations it will converge to final x, y as in :
x' y' Δx₀ Δy₀ = -0.416170108 0.187124851 -0.001347323 -0.000846066
x₀ y₀ Δx₁ Δy₁ = -0.417517431 0.186278785 -0.001365358 -0.00084913
x₁ y₁ Δx₂ Δx₂ = -0.417535466 0.186275721 -0.001365583 -0.000849169
x₂ y₂ Δx₃ Δy₃ = -0.417535691 0.186275682 -0.001365586 -0.00084917
x₃ y₃ Δx₄ Δy₄ = -0.417535694 0.186275681 -0.001365586 -0.00084917
where k1, k2, k3, k4, p1, p2 = -0.0435999, 0.0398564, -0.0155917, 0, -0.00109523, 0.00746545
Maybe this can help,